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What is an AI System ?
• Artificial intelligence (AI) is finding 

application in systems that make 
decisions affecting the safety of people, 
assets, and environment

• This class of systems are referred to as 
AI systems

• They try to mimic human-like intelligence in 
tasks such as object detection, natural 
language understanding, and autonomous 
decision making

• They do so through the use large datasets, 
machine learning, computer vision, natural 
language processing and computational 
power to analyze, learn, and make decisions



Risks in AI Systems
Design and Implementation Challenges

3
Lack of control of high 
dimensionality effects where 
a miniscule change in input 
can change the prediction of 
the system

1
Lack of formal specification 
can cause mismatch between 
designer objectives and what 
the system learns

2
Lack of implementation 
transparency make them 
incomprehensible for design 
review and inspection

4
Data used for training and 
testing the system cannot be 
guaranteed to be drawn 
from the same probability 
distribution

5
Lack of quality data can 
cause the system to learn 
behavior that is not desired 



A Case Study of 
Predictive Maintenance 

of Aircraft Engines
• Research Focus: Improving safety of Prognostics and Health 

Management (PHM) systems

• Industry Significance: Targeted at aviation, prioritizing passenger 
safety and operational efficiency.

• Key Challenges Addressed:
• Enhancing prediction accuracy
• Minimizing false negatives

• Expected Outcomes:
• Precise predictive maintenance
• Ensured safety with human in the loop



Dataset Overview: “Turbofan 
Engine Degradation Simulation 

Data”
• The dataset utilized in this research is the “Turbofan 

Engine Degradation Simulation Data”

• This dataset is generated through the use of the C-
MAPSS simulator, an acronym for 'Commercial 
Modular Aero-Propulsion Simulation’ 

• This simulator replicates a large commercial 
turbofan engine

• Four distinct simulation datasets have been 
created, considering various combinations of 
operational conditions and fault modes



Research Agenda

Research Objective Techniques Rationale

Safe Design: Design 
the system with safety 
in mind

• Exploratory data analysis 
(EDA) and data 
preprocessing

• Feature engineering

• Our predictive model is going to be just as good as 
the data, therefore, processing the data in the right 
manner is important to help the models arrive at 
the right conclusions

Safe Margin: Improve 
the system resilience 
against data shifts and 
perturbations

• Monitor data drift using 
one or more of:

• Statistical tests
• Clustering
• Anomaly detection
• Novelty detection

• Since machine learning based predictive models 
learn from data, it is vital to understand and identify 
any change in distribution of data as change in 
distribution may affect the behavior of the models.

Safe Fail: Keep the 
system safe at the time 
of failure

• Hazard analysis and survival 
analysis

• Bandit of Models
• Explainable AI

• Analyze component hazard and survival ratios to 
track their performance trends

• Introduce diversity in prediction approaches using a 
bandit of models and voting 

• Use monitoring function notifying human in the 
loop



Proposed Architecture

Safe Design
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Exploratory Data Analysis and Input Checker

EDA is a crucial preliminary step in understanding and preparing the dataset

EDA helps uncover data patterns, check data quality, and assess distribution characteristics

EDA includes data preprocessing tasks such as handling missing values, transforming data, and 
addressing non-normal distributions

Input checker performs data distribution check and, anomaly and novelty detection

Initial insights gained from EDA and input checking guide subsequent steps in the analysis.



EDA Insights and Findings
• Null Values: No null values were 

detected in any dataset features, 
ensuring data completeness

• Mean Cycles: The mean number of 
cycles for engines in the training set is 
123

• Histogram of remaining cycles: Most 
engines start degrading after 140 
cycles, with breakdowns around 200 
cycles

RC Histogram



EDA Insights and 
Findings

Sensor Values Distribution: 
Sensor values in train, test, and 
PHM08 datasets have different 
scales which are normalized 
and scaled between 0 & 1



EDA Insights and 
Findings

1. Correlation Matrix: Many features 
exhibit strong positive (> 90%) and 
negative correlations (> 90%), 
highlighting multicollinearity

2. Feature Selection: Boruta is 
preferred over PCA for feature 
selection due to skewness, non-
linear distribution, and 
multicollinearity in the normalized 
features



Feature Selection with Boruta
• Boruta is a feature selection method used in our research 

for predictive maintenance
• Boruta adopts an "all-relevant" approach, identifying all 

features relevant for prediction
• In our case, Boruta recommended 18 out of 26 features for 

predictive maintenance
• Selected features include unit number, time in cycles, 

sensor readings (s1, s2, s3, etc.), and setting parameters 
(setting_1).

• Boruta helps address multicollinearity by reducing 
correlated features

• This process streamlines the feature set, enhancing 
predictive model efficiency and accuracy



Proposed Architecture

Safe Design
1

Safe Margin
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Detecting Data Drift for Model Resilience
Data drift occurs when the distribution of new data deviates from the data the model was trained on.
1. Statistical tests: We employ statistical tests to detect signs of data drift by comparing the 

distribution of train, test, and PHM08 datasets

2. Q-Q Plots: Quantile-quantile plots help visualize data distribution, showing consistency in sensor 
values across datasets despite non-normal distributions.

3. Clustering: K-means clustering is an unsupervised technique used for grouping data points together 
based on similarity

4. Anomaly Detection: One-class SVM identifies outliers in data distribution, with data points at 
extreme value ranges often classified as anomalies

5. Novelty Detection: An extension of one-class SVM  (also called local outlier factor) is used to detect 
how the density of a sample differs from those of its neighbors



Proposed Architecture
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Safe Margin
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Safe Fail 
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Kaplan-Meier Estimation
• Kaplan-Meier estimation is a statistical 

technique used for analyzing survivability or 
time-to-event data

• It's especially useful for predictive 
maintenance because it allows us to estimate 
and visualize survival probabilities over time

• This estimation is vital for understanding 
when engine breakdowns might occur and 
predicting maintenance needs based on time



Kaplan-Meier Survival Analysis 
Model Results

• Train Set: 100% survival probability for the 
first 125 cycles, dropping afterward. A 50% 
chance of engine survival at 200 cycles

• Test Set: Right-censored data with 100% 
survival probability up to approximately 
75 cycles. A 50% probability of engine 
survival at 160 cycles

• PHM08 Dataset: 100% survival probability 
until 125 cycles, followed by a decline. A 
50% chance of engine survival at 200 
cycles

KM estimate of survival probability of the engines in train set



Cox-Proportional 
Hazard

• The Cox-Proportional 
Hazard model is employed 
alongside survival analysis 
to assess the impact of 
various features on survival

• It helps us understand how 
different features influence 
the risk of engine failure



Hazard Analysis 
Model Results

• Figure shows a likelihood of type I 
error (false positives) but fewer 
cases of type II error (false 
negatives).

Scatterplot of log_partial_hazard vs health_state

Healthy 
Engines

Unhealthy 
Engines

False Negatives



Proposed Architecture
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1
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2

Safe Fail 
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Model Diversity for Robust 
Predictive Maintenance

• In this research, we employ a combination of 
predictive models to comprehensively address 
the predictive maintenance of aircraft engines

• RandomForest, XGBoost, SVM, and LSTM

• The choice of these models aims to provide 
versatility and diversity in addressing the 
complex task of predictive maintenance, 
considering various aspects and scenarios



Random Forest

• Random Forest (RF) is a machine learning model that 
utilizes an ensemble of decision trees

• RF stands out due to its versatility, interpretability, quick 
training times, and strong predictive performance

• It can effectively handle high feature correlation, which is 
common in real-world datasets

• Moreover, RF doesn't require feature scaling or 
normalization, making it suitable for the dataset 
characteristics



XGBoost

XGBoost, or Extreme Gradient 
Boosting, is another tree-based 
model that operates within a 
gradient boosting framework

What sets XGBoost apart is its 
ability to handle class imbalance 
and effectively address 
anomalies in the data

It assigns more weight to classes 
with low participation, 
improving the model's ability to 
predict rare events

This is crucial for predictive 
maintenance, where identifying 
rare failure events is of utmost 
importance



Support-Vector Machine

Support-Vector Machine (SVM) is a kernel-based model capable of performing 
both linear and nonlinear classification, regression, and outlier detection

We specifically employ the polynomial kernel with a degree of 3 in this 
research to handle nonlinear data relationships

SVMs are sensitive to the scales of features, so it's essential to standardize or 
normalize features before applying the model



Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) 
that excels at capturing order dependence in sequence prediction problems

This model is particularly well-suited for handling continuous sensor readings, 
making it a valuable tool for analyzing aircraft engine data

LSTM considers information from previous inputs when processing current 
inputs, which is crucial for understanding the temporal relationships in the data



Results

Model Metrics

Accuracy Recall Precision F1- score

RandomForest 85.518 86.2 87.606 86.89

XGBoost 85.423 86.06 87.558 86.805

SVM 83.63 84.5 85.97 85.17

LSTM 78.58 90.27 75.86 82.44



Feature Importance Analysis
• Feature Importance Analysis: Analyzed feature importance using 

RandomForest, XGBoost, and hazard analysis.
• Top 6 Features by RandomForest: time_in_cycles, s13, s11, s4, s15, 

and s2.
• Top 6 Features by XGBoost: time_in_cycles, s15, s11, s13, s21, and s4.
• Top 6 Features by hazard analysis: s15, s21, s11, s20, s2 and s13.
• Common Key Features: Consistently recognized s11 and s15 as pivotal 

features across all models.
• These identified features play a pivotal role in the voter based 

predictive maintenance process, guiding decisions on when 
maintenance actions should be initiated to ensure aircraft engine 
safety and reliability.
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Enhanced Predictive 
Engine Architecture

• We use the concept of 
'multi-armed bandits,' 
employing multiple models 
to perform the same task

• We use four different models 
and optimize each one for 
predictive maintenance

• An ensemble voter function 
integrates predictions from 
the four models, enhancing 
resiliency



Tables 1 and 2 provide insights into the performance of these filters, including 
the voter based on majority, voter based on majority and probability, and the 
voter based on majority, probability, and feature importance, in comparison to 
the four primary models, on both test data and the PHM08 dataset.

Model False 
Negatives

% of total 
datapoints

RandomForest 91 12.87 %

XGBoost 93 13.15%

SVM 93 13.15%

LSTM 71 10.04%

Voter based on Simple 
majority

79 11.17%

Voter based on Majority 
and Probability

42 5.94%

Voter based on majority, 
probability, and feature 
importance

7 0.99%

Model False 
Negatives

% of total 
datapoints

RandomForest 3275 7.13%

XGBoost 3254 7.09%

SVM 3697 8.05%

LSTM 3208 6.99%

Voter based on Simple 
majority

2848 6.20%

Voter based on Majority 
and Probability

1186 2.58%

Voter based on majority, 
probability, and feature 
importance

59 0.13%

Overview of false negatives from 707 test points Overview of false negatives from 45918 test points 



Explainable AI
Enhancing Predictive Maintenance Transparency

• Explainable AI (XAI) becomes crucial in predictive maintenance 
framework, where understanding model predictions and their 
explanations is vital

• LIME (Local Interpretable Model-Agnostic Explanations) can be 
employed to shed light on prediction probabilities made by each 
model when there is no majority consensus among them.

• Figures in following slide visually demonstrate the explanations 
provided by LIME for various data points, helping human operators 
gain insights into why certain predictions were made.

• The explanations often highlight the importance of specific 
features, such as s15 and time_in_cycles, which consistently 
emerge as critical factors in determining engine health.

• These explanations not only aid in decision-making but also offer 
transparency and trust in AI-driven predictive maintenance 
systems.



XAI using LIME



Conclusions and Future Work

• From the analysis done in these experiments, we find the proposed 
architecture greatly improves prognostic predictions

• To prevent the models from predicting false negatives, we have
• Handled data imbalance and multicollinearity
• Managed drift by monitoring the distribution of the data 
• Used multiple models as diverse ways of arriving at predictions, and 
• Used a voter architecture with LIME to produce dependable and correct 

predictions
• Although we could not nullify the false negatives, voting not only reduces the number of 

false negatives but also provides explanations to the human in the loop

• Future work would investigate additional techniques to improve the 
input checker, analytic engine and predictive engine
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